首页> 外文OA文献 >Extreme hydrothermal conditions at an active plate-bounding fault
【2h】

Extreme hydrothermal conditions at an active plate-bounding fault

机译:在活动板块边界断层处的极端水热条件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes1. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre2, 3. At temperatures above 300–450 degrees Celsius, usually found at depths greater than 10–15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional–mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades4, 5. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults.
机译:温度和流体压力条件控制着地质断层上的岩石变形和矿化,从而控制了地震的分布1。典型的板内大陆壳具有静水流体压力,并且每公里的地表温度梯度为31±15摄氏度2、3。在高于300-450摄氏度的温度下,通常在大于10-15公里的深度处发现石英和长石的可塑性缓解了地震引起的蠕变,因此地震很少发生。水热条件控制着矿物相的稳定性,从而控制了与地震破裂周期相关的摩擦-机械过程,但是很少有来自活动板块边界断层的温度和流体压力数据。在这里,我们报告的是在阿尔卑斯断层上部钻出的钻孔的结果,该钻孔处于应力累积周期的后期,预计在未来几十年内发生5级8级地震。5。钻孔(深度893米)断层悬挂壁内的孔隙流体压力梯度超过静水压力水平的9%±1%,平均地热梯度为每公里125±±55摄氏度。这些极端的热液条件是由于断层的快速运动(从深处输送岩石和热量)以及地形驱动的流体运动(将热量集中到山谷中)引起的。断层内可能会发生剪切加热,但这不是解释我们的观察结果所必需的。我们的数据和模型表明,在断层滑动,岩石压裂和蚀变过程以及板块边界断层处的地形发育过程之间存在正反馈,可以在成地震带上部形成高度异常的流体压力和温度梯度。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号